Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

John F. Gallagher,* Keith
Hanlon, Joshua Howartht and Jean-Luc Thomas

School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
\dagger Joint contribution.
Correspondence e-mail: john.gallagher@dcu.ie

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.105$
Data-to-parameter ratio $=18.5$
For details of how these key indicators were automatically derived from the article, see
http://journals.iucr.org/e.

2-(3-Chlorophenyl)-1-ferrocenylmethyl-1H-1,3-benzimidazole: an electroactive agent for anion sensor and malarial parasite studies

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2}\right)\right]$, a model electroactive agent for anion sensor and malarial parasite studies, has $\mathrm{Fe}-\mathrm{C}$ bond lengths in the range 2.020 (3)2.0543 (18) \AA. The $\mathrm{Fe} \cdots C g$ distances ($C g$ indicates a ring centroid) are essentially similar, with values of 1.6467 (10) and 1.6487 (11) \AA for the substituted and unsubstituted cyclopentadienyl rings, respectively, with a linear $C g \cdots \mathrm{Fe} \cdots C g$ angle of $179.12(7)^{\circ}$. The $\mathrm{Fe}-\mathrm{C}_{\mathrm{Cp}}-\mathrm{Csp}^{3}$ angle is $128.43(13)^{\circ}$ and the $\mathrm{Fe} 1-\mathrm{C}_{\mathrm{Cp}}-\mathrm{Csp}{ }^{3}-\mathrm{N}_{\mathrm{Bz}}$ torsion angle $110.27(17)^{\circ}(\mathrm{Cp}$ is cyclopentadienyl and Bz is benzimidazole). Weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ contacts form the only intermolecular interactions of significance.

Comment

The synthesis of anion receptors is currently an area of intense research activity due primarily to the ubiquitous roles which anions play in both chemical and biological processes, for example, as substrates or co-factors for enzymes and as nucleophiles, redox agents and phase transfer catalysts. In the past decade, combinations of an organometallic moiety with an amide $\mathrm{N}-\mathrm{H}$ group have been demonstrated to be essential components in many anion-recognition receptors (Beer, 1998; Kingston et al., 1999). 1,3-Disubstituted imidazolium cations have been utilized as such recently (Sato et al., 1999; Thomas et al., 2000) and their synthetic intermediates (imidazolin-2-ylidenes) are also of interest as carbenes and the subject of several synthetic and structural investigations (Benito et al., 1995; Bildstein et al., 1998, 1999).

Recently, benzimidazole systems have attracted our considerable attention in synthetic and applied biological research (Howarth et al., 2000; Thomas et al., 2000; Howarth \& Hanlon, 2001). Compound (I), depicted in Fig. 1, is obtained from 2-(3-chlorophenyl)benzimidazole and (trimethyl)ammoniumferrocenylmethyl iodide (Pauson et al., 1966; Ferguson et al., 1994a) and is an important electroactive model compound for application in anion sensor studies (Thomas et al., 2000), as well as in malarial parasite research (Howarth \& Hanlon, 2001).

Received 21 February 2001
Accepted 27 February 2001
Online 9 March 2001

Figure 1
A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

In (I), selected bond lengths and angles are listed in Table 1. The $\mathrm{Fe}-\mathrm{C}$ bond lengths are in the range 2.020 (3)2.0543 (18) \AA; the $\mathrm{Fe} 1 \ldots C g(1,2)$ distances $(C g 1$ and $C g 2$ are centroids of the cyclopentadienyl rings) are comparable, 1.6467 (10) and 1.6487 (11) \AA for the substituted and unsubstituted rings, respectively, with a linear $C g 1 \cdots \mathrm{Fe} 1 \cdots C g 2$ angle of 179.12 (7) ${ }^{\circ}$. The cyclopentadienyl rings are essentially eclipsed, with a $\mathrm{C} 21-\mathrm{Fe} 1-\mathrm{C} 11-\mathrm{C} 2$ torsion angle of $-2.8(2)^{\circ}$ and there is no evidence for disorder in the unsubstituted $\mathrm{C}_{5} \mathrm{H}_{5}$ ring. The $\mathrm{Fe}-\mathrm{C}_{\mathrm{Cp}}-\mathrm{Csp}{ }^{3}$ angle is $128.43(13)^{\circ}$ and similar to 128.3 (3) ${ }^{\circ}$ in N-ferrocenylmethyl-2-ferrocenylbenzimidazole, (II) (Benito et al., 1995), or 127.86 (12) and $126.80(12)^{\circ}$ in the two independent molecules of racemic ferrocenyl(phenyl)methanol (Ferguson et al., 1994b). The benzimidazole is twisted with respect to the ferrocenyl moiety, with $\mathrm{Fe} 1-\mathrm{C}_{\mathrm{Cp}}-\mathrm{Csp}{ }^{3}-\mathrm{N} 2=110.27(17)^{\circ}$ and $\mathrm{C}_{\mathrm{Cp}}-\mathrm{Csp}^{3}-$ $\mathrm{N} 2-\mathrm{C} 3=71.7(2)^{\circ}$ [the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 31-\mathrm{C} 32$ angle is $\left.126.9(2)^{\circ}\right]$, and due to the bulky ferrocenyl and benzimidazole groups avoiding possible sterically hindered $\mathrm{H} \cdots \mathrm{H}$ contacts. In the crystal structure, the shortest $\mathrm{H} \cdots \mathrm{Cl} 1$ contacts and involving $\mathrm{C} 25-\mathrm{H} 25$ and $\mathrm{C} 36-\mathrm{H} 36$ [C $\cdots \mathrm{Cl} 3.802$ (5) and 3.670 (2) Å] are listed in Table 2.

A search of the October 2000 version of the Cambridge Structural Database using ConQuest Version 1.1 (Allen \& Kennard, 1993) for molecules similar to (I) shows that such
compounds are relatively rare and include N-ferrocenyl-methyl-2-ferrocenylbenzimidazole (ZIJPIR; Benito et al., 1995) and N-ferrocenylmethyl-2-ferrocenyl-benzimidazolium tetrafluoroborate (GIFLUC; Li et al., 1998), which differ from (I) primarily through replacement of the chlorophenyl group by a ferrocenyl group.

Experimental

To a mixture of 2-(chlorophenyl)benzimidazole ($2.5 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.07 \mathrm{~g}, 15 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{ml})$ was added (trimethyl)ammoniumferrocenylmethyl iodide $(4.05 \mathrm{~g}, \quad 10.5 \mathrm{mmol})$ (Pauson et al., 1966; Ferguson et al., 1994a), and the mixture was refluxed for 12 h . The reaction was cooled to room temperature, water added and the suspension extracted into CHCl_{3}. The organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under vacuum to leave a brown solid. The crude product was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$ (97:3) as eluent. The title compound was obtained as a light-brown powder. Yield 2.8 g (64%), m.p. $435-438 \mathrm{~K}$ (uncorrected). Analysis for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClFeN}_{2}$, calculated: C 67.57, H 4.45, N 6.56%; found: C 67.47, H4.51, N 6.52%. IR (KBr, $\left.v \mathrm{~cm}^{-1}\right), 3051,2971,2308,1708,1639,1456$, 1422, 1364, 1330, 1261, 1153, 1101, 1027, 1008, 895, 741, 706, 695. ${ }^{1} \mathrm{H}$ NMR [$400 \mathrm{MHz}, \delta \mathrm{H}$ (p.p.m.), CDCl_{3}], $7.82(m, 2 \mathrm{H}$, aryl-H), 7.69 (m, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.56-7.48\left(\mathrm{~m}, 3 \mathrm{H}\right.$, aryl-H and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $5.22\left(s, 2 \mathrm{H}, \mathrm{Fc}-\mathrm{CH}_{2}\right), 4.13-4.07(m, 9 \mathrm{H}, \mathrm{Fc}-\mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\delta \mathrm{C}, \mathrm{CDCl}_{3}\right)$, $152.27,143.27,136.04,135.08,132.79,130.4,130.35,130.08,128.21$, $123.49,123.05,120.48,110.86,83.36,69.25,69.14,68.71,44.95$.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2}\right)\right]$
$M_{r}=426.71$
Monoclinic, $P 2_{1} / n$
$a=11.6838$ (9) Å
$b=9.9220$ (6) \AA
$c=16.7493$ (14) \AA
$\beta=90.542(6)^{\circ}$
$V=1941.6$ (2) \AA^{3}
$Z=4$
$D_{x}=1.46 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 27
\quad reflections
$\theta=4.5-16.1^{\circ}$
$\mu=0.93 \mathrm{~mm}^{-1}$
$T=297(1) \mathrm{K}$
Block, orange
$0.37 \times 0.24 \times 0.21 \mathrm{~mm}$

Data collection

Bruker $P 4$ diffractometer

 $\omega-2 \theta$ scansAbsorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.682, T_{\text {max }}=0.746$
5483 measured reflections
4669 independent reflections
3646 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.033 \\
& \theta_{\max }=28.0^{\circ} \\
& h=-15 \rightarrow 1 \\
& k=-13 \rightarrow 1 \\
& l=-22 \rightarrow 22 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 197 \text { reflections } \\
& \quad \text { intensity decay: } 2 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
4669 reflections
253 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0495 P)^{2}\right. \\
& \quad+0.6062 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.70 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Fe} 1-\mathrm{C} 11$	$2.0543(18)$	$\mathrm{Fe} 1-\mathrm{C} 25$	$2.020(3)$
$\mathrm{Fe} 1-\mathrm{C} 12$	$2.0419(19)$	$\mathrm{Cl} 1-\mathrm{C} 35$	$1.742(2)$
$\mathrm{Fe} 1-\mathrm{C} 13$	$2.038(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.310(3)$
$\mathrm{Fe} 1-\mathrm{C} 14$	$2.034(2)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.389(3)$
$\mathrm{Fe} 1-\mathrm{C} 15$	$2.040(2)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.378(3)$
$\mathrm{Fe} 1-\mathrm{C} 21$	$2.031(3)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.456(2)$
$\mathrm{Fe} 1-\mathrm{C} 22$	$2.034(3)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.386(2)$
$\mathrm{Fe} 1-\mathrm{C} 23$	$2.032(2)$	$\mathrm{C} 1-\mathrm{C} 31$	$1.480(3)$
$\mathrm{Fe} 1-\mathrm{C} 24$	$2.026(2)$	$\mathrm{C} 2-\mathrm{C} 11$	$1.504(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$104.77(17)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 31$	$123.68(19)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$128.44(16)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 31$	$122.80(18)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$105.85(16)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 11$	$111.86(15)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$124.26(17)$	$\mathrm{C} 2-\mathrm{C} 11-\mathrm{Fe} 1$	$128.43(13)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$113.52(17)$		
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 11$	$71.7(2)$	$\mathrm{C} 21-\mathrm{Fe} 1-\mathrm{C} 11-\mathrm{C} 2$	$-2.8(2)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 12$	$18.6(3)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 31-\mathrm{C} 36$	$128.8(2)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 11-\mathrm{Fe} 1$	$110.27(17)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C25-H25 $\cdots \mathrm{Cl}^{1}{ }^{\mathrm{i}}$	0.93	3.05	$3.802(5)$	139
C36-H36 $\cdots \mathrm{Cl}^{1 i}$	0.93	3.03	$3.670(2)$	127

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $2-x,-y, 1-z$.
All H atoms bound to C atoms were treated as riding, with SHELXL97 (Sheldrick, 1997) defaults for $\mathrm{C}-\mathrm{H}$ distances and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for the remainder. Examination of the structure with PLATON (Spek, 1998) showed that there were no solvent-accessible voids in the crystal lattice.

Data collection: XSCANS (Siemens, 1996); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPIII (Burnett \& Johnson, 1996) and PLATON (Spek, 1998); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998).

JFG thanks the School of Chemical Sciences for the purchase of a Bruker P4 diffractometer. JH thanks Forbairt for grants in aid of research.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 3137.

Beer, P. D. (1998). Acc. Chem. Res. 31, 71-80.
Benito, A., Martínez-Máñez, R., Payá. J., Soto, J., Tendero, M. J. L. \& Sinn, E. (1995). J. Organomet. Chem. 503, 259-263.

Bildstein, B., Malaun, M., Kopacka, H., Ongania, K.-H. \& Wurst, K. (1998). J. Organomet. Chem. 552, 45-61.
Bildstein, B., Malaun, M., Kopacka, H., Ongania, K.-H. \& Wurst, K. (1999). J. Organomet. Chem. 572, 177-187.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Ferguson, G. (1998). PREP8. University of Guelph, Canada.
Ferguson, G., Gallagher J. F., Glidewell, C. \& Zakaria, C. M. (1994a). Acta Cryst. B50, 146-150.
Ferguson, G., Gallagher J. F., Glidewell, C. \& Zakaria, C. M. (1994b). J. Organomet. Chem. 464, 95-101.
Howarth, J. \& Hanlon, K. (2001). Tetrahedron Lett. 42, 271-754.
Howarth, J., Thomas, J.-L., Hanlon, K. \& McGuirk, D. (2000). Synth. Commun. 30, 1865-1878.
Kingston, J. E., Ashford, L., Beer, P. D. \& Drew, M. G. B. (1999). J. Chem. Soc. Dalton Trans. pp. 251-257.
Li, P., Scowen, I. J., Davies, J. E. \& Halcrow, M. A. (1998). J. Chem. Soc. Dalton Trans. pp. 3791-3799.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pauson, P. L., Sandhu, M. A. \& Watts, W. E. (1966). J. Chem. Soc. C, pp. 251255.

Sato, K., Arai, S. \& Yamagishi, T. (1999). Tetrahedron Lett. 40, 5219-5222.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
Spek, A. L. (1998). PLATON98. University of Utrecht, The Netherlands.
Thomas, J.-L., Howarth, J., Hanlon, K. \& McGuirk, D. (2000). Tetrahedron Lett. 41, 413-416.

